更多>>精华博文推荐
更多>>人气最旺专家

陈奕蓝

领域:IT168

介绍:这主要是因为它能增加大脑中使人愉悦的5-羟色胺物质的含量。...

陈春凤

领域:互动百科

介绍:当时也不叫“开国大典”,而是称作“开国盛典”。利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新

国际利来ag厅
本站新公告利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新
wqd | 2019-01-23 | 阅读(353) | 评论(514)
近年来国内小草浆厂因环保问题的日益突出而逐渐关闭,已经开始迫使我国造纸行业开始大力发展木材制浆造纸,因此,发展木材制浆造纸已成为我国造纸行业必由之路和必然趋势。【阅读全文】
利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新
7fa | 2019-01-23 | 阅读(712) | 评论(121)
4.具有高度发达的神经系统和感觉器官兔的神经系统兔的脑能够灵敏地感知外界环境的变化,对环境的复杂多变及时作出反应。【阅读全文】
lld | 2019-01-23 | 阅读(988) | 评论(772)
山东大学硕士学位论文摘要随着世界经济的发展和全球化进程的深入,国家问的竞争日益表现为人才的较量。【阅读全文】
7ak | 2019-01-23 | 阅读(872) | 评论(217)
改革开放以来,尽管中国的造纸工业取得了世界瞩目的成就,但这主要来自本土消费市场的强劲需求和生产的粗放式增长,而不是产业综合竞争能力的体现。【阅读全文】
x6g | 2019-01-23 | 阅读(989) | 评论(89)
PAGE考点44两点间的距离公式要点阐述要点阐述两点间的距离公式两点坐标P1(x1,y1),P2(x2,y2)距离公式|P1P2|=特例若O(0,0),P(x,y),则|OP|=典型例题典型例题【例】某地东西有一条河,南北有一条路,A村在路西3千米、河北岸4千米处;B村在路东2千米、河北岸eq\r(3)千米处.两村拟在河边建一座水力发电站,要求发电站到两村距离相等,问:发电站建在何处?到两村的距离为多远?【解题技巧】两点间的距离公式可用来解决一些有关距离的问题,根据题目条件直接套用公式即可,要注意公式的变形应用,公式中两点的位置没有先后之分.小试牛刀小试牛刀1.已知M(2,1),N(-1,5),则|MN|等于(  )A.5B.eq\r(37)C.eq\r(13)D.4【答案】A【解析】|MN|=eq\r(2+12+1-52)=5.【思想方法】坐标平面内两点间的距离公式,是解析几何中的最基本最重要的公式之一,利用它可以求平面上任意两个已知点间的距离.反过来,已知两点间的距离也可以根据条件求其中一个点的坐标.2.已知点A(-2,-1),B(a,3),且|AB|=5,则a的值为(  )A.1B.-5C.1或-5D.-1或5【答案】C【解析】由|AB|==5,可知(a+2)2=9.∴a=1或-5.3.一条平行于轴的线段的长是5,它的一个端点是,则它的另一个端点的坐标是(  )A.(–3,1)或(7,1)B.(2,–3)或(2,7)C.(–3,1)或(5,1)D.(2,–3)或(2,5)【答案】A【解析】设B(a,1),则,或7.4.光线从点A(-3,5)射到x轴上,经反射后经过点B(2,10),则光线从A到B的距离是(  )A.5eq\r(2)B.2eq\r(5)C.5eq\r(10)D.10eq\r(5)【答案】C【规律方法】(1)两点间的距离公式与两点的先后顺序无关,利用此公式可以将有关的几何问题转化成代数问题进行研究.(2)当点,在直线上时,=.5.若点在轴上,点在轴上,线段的中点的坐标为(3,4),则的长度为(  )A.10B.5C.8D.6【答案】A6.两直线3ax-y-2=0和(2a-1)x+5ay-1=0分别过定点A,B,则|ABA.eq\f(\r(89),5)B.eq\f(17,5)C.eq\f(13,5)D.eq\f(11,5)【答案】C【解析】直线3ax-y-2=0过定点A(0,-2),直线(2a-1)x+5ay-1=0,过定点Beq\b\lc\(\rc\)(\a\vs4\al\co1(-1,\f(2,5))),由两点间的距离公式,得|AB|=eq\f(13,5).考题速递考题速递1.以A(5,5),B(1,4),C(4,1)为顶点的三角形是(  )A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【答案】B【解析】∵|AB|=eq\r(17),|AC|=eq\r(17),|BC|=3eq\r(2),∴三角形为等腰三角形.故选B.2.已知点A(1,2),B(7,10),则以为斜边的直角三角形斜边上的中线长为(  )A.5B.7C.9D.10【答案】A【解析】,∴中线长是5.3.在直线上求点,使点到点的距离为,则点坐标是(  )A.(5,5)B.(–1,1)C.(5,5)或(–1,1)D.(5,5)或(1,–1)【答案】C4.已知,,当取最小值时,求实数的值.【解析】由两点间的距离公式得.∴当时,取最小值.数学文化数学文化距离两点间的距离(两点之间线段最短)【阅读全文】
kv6 | 2019-01-22 | 阅读(875) | 评论(434)
(8)一个积极而乐观的人生态度这能让你对日复一日的工作保持积极和热情,不至于在茫茫人海迷失自我或悲伤失落。【阅读全文】
ssc | 2019-01-22 | 阅读(531) | 评论(967)
可是他们向来主张,研究人类的唯一适当对象就是人本身。【阅读全文】
mpe | 2019-01-22 | 阅读(749) | 评论(405)
新华社资料照片一个半小时的试听课结束后,儿子很兴奋,在课程销售的热情推介下,杭州的程芳(化名)刷了近3万元,给儿子报了两年半的编程课。【阅读全文】
利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新
keo | 2019-01-22 | 阅读(595) | 评论(615)
 最大值与最小值学习目标重点难点1.知道函数的最大值与最小值的概念.2.能够区分函数的极值与最值.3.会用导数求闭区间上不超过三次的多项式函数的最大值、最小值.重点:函数在闭区间上的最值的求解.难点:与函数最值有关的参数问题.1.最大值与最小值(1)如果在函数定义域I内存在x0,使得对任意的x∈I,总有______________,则称f(x0)为函数在定义域上的最大值.最大值是相对函数定义域整体而言的,如果存在最大值,那么最大值________.(2)如果在函数定义域I内存在x0,使得对任意的x∈I,总有____________,则称f(x0)为函数在定义域上的最小值.最小值是相对函数定义域整体而言的,如果存在最小值,那么最小值________.2.求f(x)在区间[a,b]上的最大值与最小值的步骤(1)求f(x)在区间(a,b)上的________;(2)将第(1)步中求得的________与______,______比较,得到f(x)在区间[a,b]上的最大值与最小值.预习交流1做一做:函数y=x-sinx,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))的最大值是______.预习交流2做一做:函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为______.预习交流3(1)函数的极值与最值有何区别与联系?(2)如果函数f(x)在开区间(a,b)上的图象是连续不断的曲线,那么它在(a,b)上是否一定有最值?若f(x)在闭区间[a,b]上的图象不连续,那么它在[a,b]上是否一定有最值?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)f(x)≤f(x0) 惟一 (2)f(x)≥f(x0) 惟一2.(1)极值 (2)极值 f(a) f(b)预习交流1:提示:∵y′=1-cosx≥0,∴y=x-sinx在eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))上是增函数,∴ymax=π.预习交流2:提示:∵f′(x)=3x2-3a=3(x2-af(x)在(0,1)内有最小值,∴方程x2-a=0有一根在(0,1)内,即x=eq\r(a)在(0,1)内,∴0<eq\r(a)<1,0<a<1.预习交流3:提示:(1)①函数的极值是表示函数在某一点附近的变化情况,是在局部上对函数值的比较,具有相对性;而函数的最值则是表示函数在整个定义区间上的情况,是对整个区间上的函数值的比较,具有绝对性.②函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有惟一性;而极大值和极小值可能多于一个,也可能没有,例如:常函数就没有极大值,也没有极小值.③极值只能在函数的定义域内部取得,而最值可以在区间的端点取得.有极值的不一定有最值,有最值的不一定有极值,极值有可能成为最值,最值只要不在端点处则一定是极值.(2)一般地,若函数f(x)的图象是一条连续不断的曲线,那么f(x)在闭区间[a,b]上必有最大值和最小值.这里给定的区间必须是闭区间,如果是开区间,那么尽管函数是连续函数,那么它也不一定有最大值和最小值.一、求函数在闭区间上的最值求下列函数的最值:(1)f(x)=-x3+3x,x∈[-eq\r(3),eq\r(3)];(2)f(x)=sin2x-x,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(π,2),\f(π,2))).思路分析:按照求函数最值的方法与步骤,通过列表进行计算与求解.1.函数f(x)=x3-2x2+1在区间[-1,2]上的最大值与最小值分别是__________.2.求函数y=5-36x+3x2+4x3在区间[-2,2]上的最大值与最小值.1.求函数在闭区间上的最值时,一般是先找出该区间上使导数为零的点,无需判断出是极大值还是极小值,只需将这些点对应的函数值与端点处的函数值比较,其中最大的是最大值,最小的是最小值.2.求函数在闭区间上的最值时,需要对各个极值与端点函数值进行比较,有时需要作差、作商,有时还要善于估算,甚至有时需要进行分类讨论.二、与最值有关的参数问题的求解已知当a>0时,函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.思路分析:先求出函数f(x)在[-1,2]上的极值点,然后与两个端点的函数值进行比较,建立关于a,b的方程组,从而求出a,b的值.若函数f(x)=-x3+3x2+9x+a在区间[-2,2]上的最大值为20,求它在该区间上的最小值.【阅读全文】
5ya | 2019-01-21 | 阅读(58) | 评论(537)
(3)税收是国家实现经济监督的重要手段。【阅读全文】
t6y | 2019-01-21 | 阅读(808) | 评论(541)
PAGE考点44两点间的距离公式要点阐述要点阐述两点间的距离公式两点坐标P1(x1,y1),P2(x2,y2)距离公式|P1P2|=特例若O(0,0),P(x,y),则|OP|=典型例题典型例题【例】某地东西有一条河,南北有一条路,A村在路西3千米、河北岸4千米处;B村在路东2千米、河北岸eq\r(3)千米处.两村拟在河边建一座水力发电站,要求发电站到两村距离相等,问:发电站建在何处?到两村的距离为多远?【解题技巧】两点间的距离公式可用来解决一些有关距离的问题,根据题目条件直接套用公式即可,要注意公式的变形应用,公式中两点的位置没有先后之分.小试牛刀小试牛刀1.已知M(2,1),N(-1,5),则|MN|等于(  )A.5B.eq\r(37)C.eq\r(13)D.4【答案】A【解析】|MN|=eq\r(2+12+1-52)=5.【思想方法】坐标平面内两点间的距离公式,是解析几何中的最基本最重要的公式之一,利用它可以求平面上任意两个已知点间的距离.反过来,已知两点间的距离也可以根据条件求其中一个点的坐标.2.已知点A(-2,-1),B(a,3),且|AB|=5,则a的值为(  )A.1B.-5C.1或-5D.-1或5【答案】C【解析】由|AB|==5,可知(a+2)2=9.∴a=1或-5.3.一条平行于轴的线段的长是5,它的一个端点是,则它的另一个端点的坐标是(  )A.(–3,1)或(7,1)B.(2,–3)或(2,7)C.(–3,1)或(5,1)D.(2,–3)或(2,5)【答案】A【解析】设B(a,1),则,或7.4.光线从点A(-3,5)射到x轴上,经反射后经过点B(2,10),则光线从A到B的距离是(  )A.5eq\r(2)B.2eq\r(5)C.5eq\r(10)D.10eq\r(5)【答案】C【规律方法】(1)两点间的距离公式与两点的先后顺序无关,利用此公式可以将有关的几何问题转化成代数问题进行研究.(2)当点,在直线上时,=.5.若点在轴上,点在轴上,线段的中点的坐标为(3,4),则的长度为(  )A.10B.5C.8D.6【答案】A6.两直线3ax-y-2=0和(2a-1)x+5ay-1=0分别过定点A,B,则|ABA.eq\f(\r(89),5)B.eq\f(17,5)C.eq\f(13,5)D.eq\f(11,5)【答案】C【解析】直线3ax-y-2=0过定点A(0,-2),直线(2a-1)x+5ay-1=0,过定点Beq\b\lc\(\rc\)(\a\vs4\al\co1(-1,\f(2,5))),由两点间的距离公式,得|AB|=eq\f(13,5).考题速递考题速递1.以A(5,5),B(1,4),C(4,1)为顶点的三角形是(  )A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【答案】B【解析】∵|AB|=eq\r(17),|AC|=eq\r(17),|BC|=3eq\r(2),∴三角形为等腰三角形.故选B.2.已知点A(1,2),B(7,10),则以为斜边的直角三角形斜边上的中线长为(  )A.5B.7C.9D.10【答案】A【解析】,∴中线长是5.3.在直线上求点,使点到点的距离为,则点坐标是(  )A.(5,5)B.(–1,1)C.(5,5)或(–1,1)D.(5,5)或(1,–1)【答案】C4.已知,,当取最小值时,求实数的值.【解析】由两点间的距离公式得.∴当时,取最小值.数学文化数学文化距离两点间的距离(两点之间线段最短)【阅读全文】
6dy | 2019-01-21 | 阅读(837) | 评论(481)
(一)、测量液体的密度3.实验记录表格:液体的密度ρ/kg·m-3量筒中液体体积V/cm3量筒中液体的质量m/g杯和剩余液体的质量m2/g杯和液体的质量m1/g注意:  计算过程所用单位和测量结果所用的单位。【阅读全文】
u4b | 2019-01-21 | 阅读(502) | 评论(928)
眼看那人要冲进急流之中了,他的妻子追在后面呼喊着不让他渡河,却已经赶不及,疯癫人终究被河水淹死了。【阅读全文】
vx5 | 2019-01-20 | 阅读(59) | 评论(420)
基因的分离定律的实质是:独立性非同源染色体上的非等位基因非同源染色体上的非等位基因*实验现象假说演绎推理实验论证结论萨顿假说:基因在染色体上类比推理证据摩尔根实验四、总结假说演绎*1.果蝇的眼色由一对等位基因(A、a)控制。【阅读全文】
ufj | 2019-01-20 | 阅读(832) | 评论(932)
别人送他一头大象,他很高兴,带着儿子和官员们一同去看。【阅读全文】
一周热点
本站互助
共5页

友情链接,当前时间:2019-01-23

利来国际官网 利来官方网站w66利来 利来国际是多少 利来ag旗舰厅手机版 利来国际最老牌
利来国际W66 国际利来旗舰厅 利来国际最给利的老牌 w66利来国际手机app 利来国际w66手机版
利来国际最老牌 利来ag旗舰厅手机版 利来娱乐国际最给利老牌网站 利来国际手机客户端 w66利来国际
w66利来娱乐 利来娱乐网 w66利来娱乐公司 利来 利来国际娱乐官方网站
溧阳市| 准格尔旗| 山丹县| 丰台区| 旬邑县| 庆云县| 宽甸| 永丰县| 榆林市| 庄河市| 凌海市| 天气| 收藏| 华阴市| 洪湖市| 宁化县| 秦皇岛市| 保康县| 灵璧县| 贵港市| 萝北县| 枝江市| 常德市| 瑞丽市| 镇宁| 阳城县| 涞水县| 邵武市| 阿拉善右旗| 乡城县| 吉安市| 马边| 辉南县| 安多县| 岢岚县| 德安县| 江津市| 宁城县| 九台市| 宜黄县| 万年县| http://m.43192600.cn http://m.41431444.cn http://m.32605407.cn http://m.88660212.cn http://m.07746067.cn http://m.08002229.cn